China Best Sales Oil-Free Gas Compressor air compressor parts

Product Description

CHINAMFG Oil-free Air Compressor

BROTIE oil-free lubricated air compressors belong to reciprocating, piston, single action and air-cooled portable air compressors, they are designed for the departments which need pure air source and higher environmental requirements. There is no need to add lubricating oil for this product, the exhaust gas does not contain oil and oil vapor and won’t pollute environment, compressed air consuming equipment and its product, therefore, it is an environment-friendly energy-saving product.

1. When it is used as a general power gas source, it is more convenient in use than oil lubricated air compressor and its maintenance cost is lower.
2. As the simplest and optimum equipment which provides high-quality oilless compressed air, it saves complicated oil filtering and treatment equipment, thus saving a lot of equipment expenditure and maintenance cost.

Select a machine type with at least 20% allowance when determining compressed air consumption.
Please take into account the condition that consumption of compressed air may be increased in the future. Correct type selection will reduce purchase and use cost.
For detailed models, please contact with CHINAMFG with no hesitation.

Model Capacity
(m 3 /min)
Discharge pressure
(Mpa)
Speed
(r/min)
Noise
bd(A)
Motor Power
(KW)
Size of discharge Air Container Volume
(M3)
dimensions
(L*W*H)
ZW-0.1/7 0.1 0.7 980 ≤ 78 1.5(220V) G1/4″ 0.04 750*350*750
ZW-0.24/7 0.24 0.24 950 ≤ 81 2.2(380V) G1/2″ 0.08 1140*400*900
ZW-0.3/7 0.3 0.7 950 ≤ 81 2.2(380V) G1/2″ 0.08 1140*400*900
VW-0.45/7 0.45 0.7 920 ≤ 83 4(380V) G1/2″ 0.12 1300*460*960
VW-0.6/7 0.6 0.7 950 ≤ 84 5.5(380V) G1/2″ 0.12 1300*460*960
VW-0.42/10 0.42 1.0 920 ≤ 84 4(380V) G1/2″ 0.12 1300*460*960
VW-0.5/14 0.5 1.4 670 ≤ 84 5.5(380V) G1/2″ 0.18 1450*500*1100
WW-0.6/10 0.6 1.0 740 ≤ 84 5.5(380V) G1/2″ 0.18 1450*500*1100
WW-0.9/7 0.9 0.7 810 ≤ 84 7.5(380V) G1/2″ 0.18 1450*500*1100
WW-0.9/10 0.9 1.0 810 ≤ 84 7.5(380V) G1/2″ 0.18 1450*500*1100
WW-0.7/12.5 0.7 1.25 740 ≤ 84 7.5(380V) G1/2″ 0.18 1450*500*1100
WW-1.25/7 1.25 0.7 860 ≤ 85 11(380V) G3/4″ 0.28 1600*650*1200
WW-1.25/10 1.25 1.0 770 ≤ 85 11(380V) G3/4″ 0.28 1600*650*1200
WW-1.6/10 1.6 1.0 820 ≤ 85 15(380V) G3/4″ 0.32 1660*650*1220
WW-1.8/10 1.8 1.0 900 ≤ 86 15(380V) G3/4″ 0.32 1660*650*1220
WW-1.2/10 1.2 1.0 740 ≤ 84 5.5*2(380V) G1″ 0.30 1850*1250*1400
WW-1.8/7 1.8 0.7 810 ≤ 84 7.5*2(380V) G1″ 0.30 1850*1250*1400
WW-1.8/10 1.8 1.0 810 ≤ 84 7.5*2(380V) G1″ 0.30 1850*1250*1400
WW-1.4/12.5 1.4 1.25 740 ≤ 84 7.5*2(380V) G1″ 0.30 1850*1250*1400
WW-2.5/7 2.5 0.7 860 ≤ 86 11*2(380V) G1″ 0.30 1850*1250*1400
WW-2.5/10 2.5 1.0 770 ≤ 86 11*2(380V) G1″ 0.30 1850*1250*1400
WW-3.0/7 3.0 0.7 770 ≤ 86 11*2(380V) G1″ 0.32 1850*1250*1400
WW-3.0/10 3.0 1.0 810 ≤ 86 11*2(380V) G1″ 0.32 1850*1250*1400
WW-3.2/7 3.2 0.7 820 ≤ 86 15*2(380V) G1″ 0.32 1900*1500*1500
WW-3.2/10 3.2 1.0 820 ≤ 86 15*2(380V) G1″ 0.32 1900*1500*1500
WW-3.6/7 3.6 0.7 900 ≤ 86 15*2(380V) G1″ 0.32 1900*1500*1500
WW-3.6/10 3.6 1.0 900 ≤ 86 15*2(380V) G1″ 0.32 1900*1500*1500
WW-4.8/10 4.8 1.0 900 ≤ 86 15*2(380V) 11*1(380V) G3/2″ / 2210*1360*1050

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Stype: Oil-Free
Inlet Pressure: 0-45bar
Outlet Pressure: 7-150bar
Power of The Motor: 1.5kw to 52kw
Capacity: 0.1-4.8m3/Min
Noisy: Lower Than 80bd
Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for High-Pressure Applications?

Gas air compressors can be used for high-pressure applications, but there are certain considerations to keep in mind. Here’s a detailed explanation:

Gas air compressors are available in various sizes and configurations, and their suitability for high-pressure applications depends on factors such as the compressor’s design, power output, and the specific requirements of the application. Here are some key points to consider:

1. Compressor Design:

Not all gas air compressors are designed to handle high-pressure applications. Some compressors are specifically built for low-to-medium pressure ranges, while others are designed to deliver higher pressure outputs. It is important to select a gas air compressor model that is rated for the desired pressure range. The compressor’s specifications and manufacturer’s guidelines will provide information on the maximum pressure it can generate.

2. Power Output:

The power output of a gas air compressor is a crucial factor in determining its suitability for high-pressure applications. High-pressure compressors require more power to achieve and sustain the desired pressure levels. It is important to ensure that the gas air compressor has sufficient power output to meet the demands of the specific high-pressure application.

3. Cylinder Configuration:

The cylinder configuration of the gas air compressor can also affect its ability to handle high-pressure applications. Compressors with multiple cylinders or stages are designed to generate higher pressures compared to compressors with a single cylinder. Multi-stage compressors compress the air in multiple steps, allowing for higher pressure ratios.

4. Safety Considerations:

High-pressure applications require careful attention to safety considerations. Gas air compressors used for high-pressure applications should be equipped with appropriate safety features such as pressure relief valves, pressure gauges, and safety shut-off systems. It is crucial to follow all safety guidelines and regulations to ensure safe operation.

5. Maintenance and Inspection:

Regular maintenance and inspection are essential for gas air compressors used in high-pressure applications. High-pressure operation can put additional stress on the compressor components, and proper maintenance helps ensure optimal performance and safety. Regular inspections and adherence to maintenance schedules will help identify and address any potential issues before they become major problems.

6. Application-specific Considerations:

Each high-pressure application may have specific requirements and considerations. It is important to evaluate factors such as the required pressure level, duty cycle, flow rate, and any specific environmental conditions that may impact the performance of the gas air compressor. Consulting with the compressor manufacturer or a qualified professional can help determine the suitability of a gas air compressor for a particular high-pressure application.

In summary, gas air compressors can be used for high-pressure applications, provided that they are designed, rated, and configured appropriately. It is essential to consider factors such as compressor design, power output, safety features, maintenance requirements, and application-specific considerations to ensure safe and reliable operation at high pressures.

air compressor

What Is the Impact of Altitude on Gas Air Compressor Performance?

Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:

1. Decreased Air Density:

As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.

2. Reduced Compressor Output:

The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.

3. Increased Compressor Workload:

At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.

4. Engine Power Loss:

If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.

5. Considerations for Proper Sizing:

When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.

6. Maintenance and Adjustments:

Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.

In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.

air compressor

What Industries Commonly Use Gas Air Compressors?

Gas air compressors find applications in various industries where compressed air is required for powering tools, equipment, and systems. These compressors are valued for their portability, versatility, and ability to provide high-pressure air. Here’s a detailed explanation of the industries that commonly use gas air compressors:

1. Construction Industry:

The construction industry extensively utilizes gas air compressors for a wide range of tasks. Compressed air is used to power pneumatic tools such as jackhammers, nail guns, impact wrenches, and concrete breakers. Gas air compressors provide the necessary airflow and pressure to operate these tools efficiently, making them ideal for construction sites.

2. Mining Industry:

In the mining industry, gas air compressors play a vital role in various operations. Compressed air is used to power pneumatic tools for drilling, rock blasting, and excavation. It is also employed in ventilation systems, conveying systems, and pneumatic control devices in mines. Gas air compressors are valued for their durability and ability to operate in rugged and remote mining environments.

3. Oil and Gas Industry:

The oil and gas industry relies on gas air compressors for numerous applications. They are used for well drilling operations, powering pneumatic tools, and maintaining pressure in oil and gas pipelines. Gas air compressors are also utilized in natural gas processing plants, refineries, and petrochemical facilities for various pneumatic processes and equipment.

4. Manufacturing and Industrial Sector:

In the manufacturing and industrial sector, gas air compressors are extensively used in different applications. They provide compressed air for pneumatic tools, such as air-powered drills, sanders, grinders, and spray guns. Compressed air is also used in manufacturing processes such as material handling, assembly line operations, and pneumatic control systems.

5. Automotive Industry:

The automotive industry utilizes gas air compressors for a variety of tasks. Compressed air is employed in automotive assembly plants for pneumatic tools, paint spraying booths, and pneumatic control systems. Gas air compressors are also used in auto repair shops for powering air tools, tire inflation, and operating pneumatic lifts.

6. Agriculture and Farming:

Gas air compressors have applications in the agriculture and farming sector. They are used for tasks such as powering pneumatic tools for crop irrigation, operating pneumatic seeders or planters, and providing compressed air for farm maintenance and repair work. Portable gas air compressors are particularly useful in agricultural settings where electricity may not be readily available.

7. Food and Beverage Industry:

In the food and beverage industry, gas air compressors are employed for various pneumatic processes and equipment. They are used in food packaging operations, pneumatic conveying systems for ingredients and finished products, and air-powered mixing and blending processes. Gas air compressors in this industry are designed to meet strict hygiene and safety standards.

8. Pharmaceutical and Healthcare Sector:

The pharmaceutical and healthcare sector utilizes gas air compressors for critical applications. Compressed air is used in medical devices, dental equipment, laboratory instruments, and pharmaceutical manufacturing processes. Gas air compressors in this industry must adhere to stringent quality standards and maintain air purity.

These are just a few examples of the industries that commonly use gas air compressors. Other sectors, such as power generation, aerospace, marine, and chemical industries, also rely on gas air compressors for specific applications. The versatility and reliability of gas air compressors make them indispensable in numerous industries where compressed air is a vital resource.

China Best Sales Oil-Free Gas Compressor   air compressor partsChina Best Sales Oil-Free Gas Compressor   air compressor parts
editor by CX 2024-02-14

Recent Posts